您当前的位置:
hadoop离线数据处理(hadoop联网)2024-10-18

2分钟读懂hadoop和spark的异同

差异: 数据处理方式: Hadoop主要基于批处理,处理大规模数据集,适用于离线数据分析;Spark则支持批处理、流处理和图计算,处理速度更快,适用于实时数据分析。

分钟快速了解Hadoop和Spark的区别与联系在大数据的世界里,Hadoop和Apache Spark是两个重要的角色。它们虽然都是大数据处理框架,但各有特色和应用场景。让我们深入探讨它们的异同。

首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。

Hadoop基于磁盘计算,只有map和reduce两种算子,它在计算过程中会有大量中间结果文件落地磁盘,这会显著降低运行效率。

hadoop的数据存储

1、存放到HDFS 一般都是要分析的数据。分析完成的数据直接存储到MYSQL 或者ORACLE 中。这种处理方式是离线处理。如日志文件存储到hdfs 分析出网站的流量 UV PV 等等。一般都是用pig hive 和mr 等进行分析的。存放到HBASE 一般都是数据拿过来直接用的。而且他是实时的。

2、Hadoop集群中的文件储存在Hadoop分布式文件系统(HDFS)中。Hadoop是一个用于处理大规模数据集的开源框架,而HDFS则是Hadoop的核心组件之一,负责在集群中存储数据。HDFS被设计为能够跨越多个节点存储大量数据,并提供高吞吐量访问这些数据的能力。

3、在Hadoop中,数据存储节点是计算节点,这种设计是实现分布式计算和存储的高效性。将计算代码推送到存储节点上进行本地化计算,减少数据的传输和网络开销,提高计算效率。Hadoop使用的HDFS是专门为分布式计算设计的文件系统,将数据划分为多个块,在集群中的多个存储节点上进行分布式存储。

Hadoop到底是干什么用的?

1、Hadoop是一个用于处理大数据的开源框架。Hadoop是一个分布式计算平台,主要用于存储和处理海量数据。其核心组件包括分布式文件系统HDFS和MapReduce编程模型。通过Hadoop,用户可以在大量廉价计算机组成的集群上处理和存储数据,从而实现高可扩展性和高容错性。

2、Hadoop是一个专为大数据处理而设计的分布式存储和计算平台,其核心组件包括HDFS(Hadoop Distributed File System)和MapReduce。它的主要目标是提供低成本、高效性、可靠性和可扩展性,以支持大规模数据的处理和存储。首先,低成本是Hadoop的一大特性。

3、用途:将单机的工作任务进行分拆,变成协同工作的集群。用以解决日益增加的文件存储量和数据量瓶颈。通俗应用解释:比如计算一个100M的文本文件中的单词的个数,这个文本文件有若干行,每行有若干个单词,每行的单词与单词之间都是以空格键分开的。

4、提供海量数据存储和计算的。需要java语言基础。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。

5、在百度,Hadoop主要应用于以下几个方面:日志的存储和统计;网页数据的分析和挖掘;商业分析,如用户的行为和广告关注度等;在线数据的反馈,及时得到在线广告的点击情况;用户网页的聚类,分析用户的推荐度及用户之间的关联度。

大数据系统架构

大数据框架主要有以下几种:Hadoop Hadoop是Apache软件基金会所开发的一个开源大数据框架,它提供了一个分布式系统基础架构,允许开发者在集群上处理大规模数据。其核心组件包括分布式文件系统HDFS、MapReduce编程模型和HBase数据库等。Hadoop主要用于数据存储和处理,解决了大数据的存储和管理问题。

大数据系统架构的特性:构建强大基石大数据系统架构的关键特性,如鲁棒性和容错性,在大规模分布式环境中,即使面临机器故障,系统也需保持稳定运行,容许错误处理。每日,无论是机器还是人为错误,都难以避免,这正是它不可或缺的特性。

混合处理系统:Apache Flink - 特点:可处理批处理和流处理任务,提供低延迟和高吞吐率。- 优势:流处理为先的方法,自行管理内存,支持多阶段并行执行。- 局限:项目较新,大规模部署经验有限,对严格的一次处理语义有较高需求。总结:选择合适的处理架构需考虑数据状态、处理时间需求和结果要求。

Storm与Spark,Hadoop相比是否有优势

Storm与Spark、Hadoop这三种框架,各有各的优点,每个框架都有自己的最佳应用场景。所以,在不同的应用场景下,应该选择不同的框架。

Storm由java和clojure写成,storm的优点是全内存计算,因为内存寻址速度是硬盘的百万倍以上,所以storm的速度相比较hadoop非常快。hadoop是实现了mapreduce的思想,将数据切片计算来处理大量的离线数据数据。

storm的网络直传、内存计算,其时延必然比hadoop的通过hdfs传输低得多;当计算模型比较适合流式时,storm的流式处理,省去了批处理的收集数据的时间;因为storm是服务型的作业,也省去了作业调度的时延。所以从时延上来看,storm要快于hadoop。

Hadoop适用于实时数据库吗(hadoop是分布式数据库吗)

hadoop一般是应用于冷数据处理,对于实时数据,如果非要使用,可以变着方法使用。方法一:在hadoop上使用hbase数据库,以为hbase是不走Map/Rece的,所以操作在毫秒级。方法二:将业务数据用程序分成实时数据和冷数据,实时数据存于关系数据库,冷数据存到hadoop。

hadoop一般是应用于冷数据处理,对于实时数据,如果非要使用,可以变着方法使用。方法一:在hadoop上使用hbase数据库,以为hbase是不走Map/Reduce的,所以操作在毫秒级。方法二:将业务数据用程序分成实时数据和冷数据,实时数据存于关系数据库,冷数据存到hadoop。

hadoop一般是应用于冷数据处理,对于实时数据,如果非要使用,可以变着方法使用。方法一:在hadoop上使用hbase数据库,以为hbase是不走Map/Reduce的,所以操作在毫秒级。

Spark是一个内存计算引擎。Spark支持多种编程语言。它适用于实时数据处理和迭代计算任务。Hadoop是一个分布式计算框架,主要用于处理海量数据。Hadoop适用于离线数据处理、批处理和数据仓库等场景。总之,Spark更注重内存计算和实时处理,而Hadoop更侧重于分布式存储和离线处理。

接着是MapReduce,它是一个计算模型,通过划分为Map和Reduce步骤,实现分布式并行处理,适合大量数据的计算任务。HBase 则是一个可扩展的、面向列的数据库,支持实时数据访问,尤其适合与MapReduce结合使用。Hive是数据仓库工具,提供结构化数据处理,类似SQL的查询语言使数据分析更为便捷。